
Synchronizace vláken

Milan Radojčić

SSPŠaG – Operační systémy

12. 1. 2026

Co je to vlákno?

• Vícevláknový program má více míst, odkud spouští instrukce.
• Vlákna mezi sebou sdílí paměť.
‣ Tedy sdílí adresový prostor.

Kód Halda Zásobník

Adresový prostor s 1 vláknem

Kód Halda Zás. 1Zás. 2

Adresový prostor se 2 vlákny

• Každé vlákno má vlastní zásobník v adresovém prostoru.

1

Využití pro vlákna

• Typickým využitím je zrychlování výpočtů, které lze jednoduše
paralelizovat.
‣ Dekódování videa, násobení matic, atd.

• Dále se vlákna používají pro provádění pomalého blokujícího IO na
pozadí.<1>

<1>Např. u GUI aplikací nechcete, aby UI přestalo být responzivní když se provádí
nějaký síťový požadavek.

2

Vytváření vláken v C#

• Pomocí new Thread(Function) můžeme vytvořit nové vlákno.
‣ Metoda Thread.Start() dané vlákno spustí a
‣ Thread.Join() blokuje aktuální vlákno, než dané vlákno skončí.

3

Ukázka: co vypíše program?

1 class MyProg {
2 static void Main() {
3 var t1 = new Thread(_ => PrintName("A"));
4 var t2 = new Thread(_ => PrintName("B"));
5 t1.Start(); t2.Start();
6 t1.Join(); t2.Join();
7 }
8
9 static void PrintName(string name) {
10 Console.WriteLine("Printing: " + name);
11 }
12 }

4

Ukázka: možné naplánování

My nevíme, jak budou přesně vlákna naplánována.

Main
B
A

A a B jsou vytvořeny

čas

Vypíše se B, A.

Main
B
A

A a B jsou vytvořeny

čas

Vypíše se A, B.

5

Ukázka: co vypíše program?

1 class MyProg {
2 static int counter = 0;
3 static void Main() {
4 var t1 = new Thread(Increment);
5 var t2 = new Thread(Increment);
6 t1.Start(); t2.Start();
7 t1.Join(); t2.Join();
8 Console.WriteLine("Counter: " + counter);
9 }
10
11 static void Increment() {
12 for (int i = 0; i < 10_000_000; i++)
13 counter++;
14 }
15 }

6

Ukázka: co se děje

• Abychom pochopili předchozí ukázku, musíme si ukázat jak funguje
zvyšování čítače na úrovni instrukcí.
1. Nejprve se načte hodnota čítače z paměti do nějakého registru.
2. Poté se hodnota v registru inkrementuje.
3. Nová hodnota v registru se až poté zapisuje zpět do paměti.

• Co když se stane, že se vlákna přeplánují po načtení z paměti, ale před
zápisem zpět?

7

Ukázka: co se děje

• Řekněme, že hodnota v čítači je 1000, pak může nastat následující
situace.
1. Vlákno A načte z paměti hodnotu 1000 do registru.
2. A inkrementuje hodnotu v registru.
3. Přeplánuje se na vlákno B.
4. B načte z paměti také 1000.
5. B inkrementuje hodnotu v registru.
6. B zapíše do paměti hodnotu 1001.
7. Přeplánuje se zpět na vlákno A.
8. A taky zapíše do paměti hodnotu 1001.

8

Proč v operačních systémech?

• Abychom psali korektní vícevláknové programy, budeme potřebovat
podporu od OS.

• Samotný OS je vícevláknový program — musí být správně
synchronizován.

9

Synchronizační nástroje: hardware

• Abychom mohli vytvářet vyšší synchronizační nástroje<2> potřebujeme
nějakou podporu od hardwaru.

• Potřebujeme, aby procesor podporoval instrukci, která atomicky
vymění hodnotu v registru s pamětí.<3>

• Obecně se této instrukci říká test-and-set, compare-and-swap nebo
atomic exchange.

• V každé architektuře se jmenuje trochu jinak:
‣ SPARC: ldstub – load and store unsigned byte
‣ x86: xchg – exchange
‣ RISC-V: amocas – atomic compare and swap

<2>Semafory, mutexy, bariéry, atd.
<3>Atomicky znamená „v jednom kroku.“

10

Jednoduchý spinlock

1 class SpinLock {
2 int flag;
3
4 void init() {
5 flag = 0;
6 }
7
8 void lock() {

9 while (TestAndSet(ref flag, 1) == 1) {}

10 }
11
12 void unlock() {
13 flag = 0;
14 }
15 }

11

Jednoduchý spinlock

• Předchozí je spíš takový pseudokód, ktarý ilustruje jak fungují
spinlocky.
‣ Funkce TestAndSet v C# neexistuje — je náhrada za naší test-and-set

instrukci.
• Když chce vlákno získat zámek, tak aktivně testuje hodnotu pořád

dokola.
‣ Může být žádoucí, když čekáme, že se zámek brzo uvolní.
‣ Nemusí být žádoucí, pokud tohle budeme dělat dlouho a budeme

tím brát čas na CPU.
• Později si ukážeme jiný způsob, jak postavit zámek na blokování.

12

Pojmy spojené se synchonizací 1

• Kritická sekce je místo, kde vlákna přistupují ke sdíleným zdrojům.
‣ V našem příkladu s čítačem je to funkce Increment:

1 static void Increment() {
2 for (int i = 0; i < 10_000_000; i++)

3 counter++; }

• Race condition (nebo data race) nastává, když se dvě vlákny najednou
pokusí upravit sdílené data.

• Vlákna by měly využívat nějaký typ vzájemného vyloučení (angl.
mutual exclusion), aby jen jedno z nich mohlo být v kritické sekci.

13

Použití spinlocku na čítač

1 using System.Threading;
2 class MyProg {
3 ...

4 static SpinLock s1 = new SpinLock();

5 static void Main() { ... }
6 static void Increment() {
7 for (int i = 0; i < 10_000_000; i++) {
8 bool lockTaken = false;
9 do {

10 s1.Enter(ref lockTaken);

11 } while (!lockTaken);
12 counter++;

13 s1.Exit(); }

14 }
15 }

14

Použití spinlocku na čítač

• Předchozí přístup nemusí být optimální — spousta architektur
podporuje atomickou inkrement instrukci.

15

Mutex

• Mutex je zkratka pro mutual exclusion lock.
• Mutexy většinou blokují vlákna, které chtějí získat zámek.
• Pokud nějaké vlákno A chce získat zámek, ale už ho vlastní vlákno B,

tak je A uspáno dokud B zámek neuvolní.
• Efektivnější než spinlock, když víme, že budeme dlouho čekat.
‣ Na druhou stranu, pokud budeme čekat jen chvíli, může být spinlock

lepší.<4>

<4>Uspání vlákna totiž vyžaduje nějakou režii od OS.
16

Použití mutexu na čítač

1 using System.Threading;
2 class MyProg {
3 ...

4 static Mutex mut = new Mutex();

5 static void Main() { ... }
6 static void Increment() {

7 mut.WaitOne(-1);

8 for (int i = 0; i < 10_000_000; i++)
9 counter++;

10 mut.ReleaseMutex();

11 }
12 }

17

Semafory

• Semafory limitují počet vláken, které mohou přistupovat ke sdílenému
zdroji.

• Inicializace: new Semaphore(initial, maximum).
‣ Čítač uvnitř semaforu je nastaven na initial.

• Do kritické sekce vstoupíme pomocí Semaphore.WaitOne().
‣ Pokud je čítač > 0, tak se sníží a vlákno vstoupí do kritické sekce.
‣ Pokud je čítač = 0, tak se vlákno uspí, dokud není čítač

inkrementován.
• Při opuštění kritické sekce zavoláme Semaphore.Release().
‣ Inkrementuje čítač o 1.

• new Semaphore(1, 1) se chová jako lock.

18

Použití semaforu na čítač

1 using System.Threading;
2 class MyProg {
3 ...

4 static Semaphore sem = new Semaphore(1, 1);

5 static void Main() { ... }
6 static void Increment() {

7 sem.WaitOne();

8 for (int i = 0; i < 10_000_000; i++)
9 counter++;

10 sem.Release();

11 }
12 }

19

Řazení událostí pomocí semaforu

Na kolik nastavit X v inicializaci semaforu?

1 class MyProg {
2 static Semaphore sem = new Semaphore(X, 100);
3 static void Main() {
4 Console.WriteLine("Vypise se 1.");
5 var t1 = new Thread(PrintStuff);
6 t1.Start();
7 sem.WaitOne();
8 Console.WriteLine("Vypise se 3.");
9 }
10 static void PrintStuff() {
11 Console.WriteLine("Vypise se 2.");
12 sem.Release();
13 }}

20

Večeřící filosofové

• Ukážeme si jeden klasický<5> synchronizační problém.

• Filozofové (P0, P1, …) sedí v
kruhu a mají mezi sebou vidličky
(f0, f1, …).

• Filosof může být v jednom ze 2
stavů:
‣ Buď přemýšlí a nic nedělá.
‣ Nebo může dostat hlad, v tom

případě musí chytnout obě
vidličky, aby mohl jíst.

<5>Poprvé publikován a vyřešen Edsgerem Dijkstrou v roce 1971.
21

Večeřící filosofové: naivní řešení

1 void Philosopher(int i) {
2 while (true) {
3 Think();
4 TakeFork(Left(i));
5 TakeFork(Right(i));
6 Eat();
7 PutFork(Left(i));
8 PutFork(Right(i));
9 }
10 }

• TakeFork(i) se
pokusí získat i-tou
vidličku.
‣ Pokud je zabraná

tak filosof čeká.
• PutFork(i) uvolní i-

tou vidličku.

Vidíte nějaký problém s tímto řešením?

22

Večeřící filosofové: funkční řešení

1 Mutex mut;
2 void Philosopher(int i) {
3 while (true) {
4 Think();

5 mut.WaitOne();

6 TakeFork(Left(i));
7 TakeFork(Right(i));
8 Eat();
9 PutFork(Left(i));
10 PutFork(Right(i));

11 mut.ReleaseMutex();

12 }
13 }

Vidíte nějaký problém s tímto řešením?
23

Večeřící filosofové: řešení pomocí semaforů

1 Semaphore[] sems;
2 void Philosopher(int i) {
3 while (true) {
4 Think();
5 TakeForks(i);
6 Eat();
7 PutForks(i);
8 };
9 }

10 void TakeForks(int i) {
11 sems[L(i)].WaitOne();
12 sems[R(i)].WaitOne();
13 }
14
15 void PutForks(int i) {
16 sems[L(i)].Release();
17 sems[R(i)].Release();
18 }

• Semafory jsou inicializovány na 1.
• Vidíte nějaký problém s tímto řešením?

24

Večeřící filosofové: řešení pomocí semaforů

• Řekněme, že je 5 filosofů, v předchozím řešení může nastat deadlock
následovně:

1. Filosof 0 dostane hlad, vezme vidličku 0.
2. Filosof 1 dostane hlad, vezme vidličku 1.
3. …
4. Filosof 4 dostane hlad, vezme vidličku 4.

• Dostali jsme se do situace, kdy každý filosof drží levou vidličku.
• Každý z nich ale chce získat pravou vidličku, ale nikdo ji neuvolní —

deadlock.

Máte nápad jak předejít deadlocku?

25

Večeřící filosofové: finální řešení

• Abychom zamezili kruhovému čekání, můžeme změnit způsob
jakým jeden filosof bere vidličky.

• Např. poslední filosof vezme nejprve pravou a pak levou vidličku.

1 void TakeForks(int i) {
2 if (i == 4) {

3 sems[R(i)].WaitOne();

4 sems[L(i)].WaitOne();

5 } else {

6 sems[L(i)].WaitOne();

7 sems[R(i)].WaitOne();

8 }
9 }

26

Večeřící filosofové: finální řešení

• Ukažme si, jak řeší poslední úprava problém kruhového čekání.

1. Filosof 0 dostane hlad, vezme vidličku 0.
2. Filosof 1 dostane hlad, vezme vidličku 1.
3. …
4. Filosof 4 dostane hlad, zkusí vzít vidličku 0.

• Tu má filosof 0, takže čeká na uvolnění.

• V této chvíli nenastane deadlock.
‣ Filosof 3 může totiž vzít vidličku 4 — tím získá obě vidličky a může se

najíst.
‣ Pak může získat obě vidličky filosof 2 atd.

27

Shrnutí

• Co jsou to vlákna.
• Odkud se berou synchronizační bugy.
‣ Co se děje na úrovni HW.

• Synchronizační primitiva, podpora od HW.
• Jednoduché synchronizační příklady, problém večeřících filosofů.

28

	Co je to vlákno?
	Využití pro vlákna
	Vytváření vláken v C#
	Ukázka: co vypíše program?
	Ukázka: možné naplánování
	Ukázka: co vypíše program?
	Ukázka: co se děje
	Ukázka: co se děje
	Proč v operačních systémech?
	Synchronizační nástroje: hardware
	Jednoduchý spinlock
	Jednoduchý spinlock
	Pojmy spojené se synchonizací 1
	Použití spinlocku na čítač
	Použití spinlocku na čítač
	Mutex
	Použití mutexu na čítač
	Semafory
	Použití semaforu na čítač
	Řazení událostí pomocí semaforu
	Večeřící filosofové
	Večeřící filosofové: naivní řešení
	Večeřící filosofové: funkční řešení
	Večeřící filosofové: řešení pomocí semaforů
	Večeřící filosofové: řešení pomocí semaforů
	Večeřící filosofové: finální řešení
	Večeřící filosofové: finální řešení
	Shrnutí

