Synchronizace vlaken

Milan Radojcic
SSPSaG - Operacni systémy
12. 1. 2026

Nt

Co je to vlakno?

- Vicevlaknovy program ma vice mist, odkud spousti instrukce.
- Vlakna mezi sebou sdili pamét.
» Tedy sdili adresovy prostor.

Kod

Halda

—>

<& Zasobnik

Adresovy prostor s 1 vlaknem

Kod

Halda

><

Zas. 2

<& Zas. 1

Adresovy prostor se 2 vlakny

- Kazde vlakno ma vlastni zasobnik v adresovém prostoru.

Vyuziti pro vlakna

- Typickym vyuzitim je zrychlovani vypoctu, které lze jednoduse
paralelizovat.

» Dekodovani videa, nasobeni matic, atd.

- Dale se vlakna pouZivaji pro provadéni pomaléeho blokujiciho 10 na
pozadi.<”

<>Napr. u GUI aplikacl nechcete, aby Ul prestalo byt responzivni kdyz se provadi
néjaky sitovy pozadavek.

Vytvareni vlaken v C#

- Pomoci new Thread(Function) muZeme vytvorit nové vlakno.
» Metoda Thread.Start() dané vlakno spusti a
» Thread.Join() blokuje aktualni vlakno, nez dané vlakno skonci.

Ukazka: co vypise program?

1 class MyProg {

2 static void Main() {

3 var tl = new Thread(_ = PrintName("A"));
A var t2 = new Thread(_ = PrintName("B"));
5 tl.Start(); t2.Start();

6 tl.Join(); t2.Join();

7 ¥

8

9 static void PrintName(string name) {

10 Console.WriteLine("Printing: " + name);
11 3

12}

Ukazka: mozné naplanovani

My nevime, jak budou presné vlakna naplanovana.

A a B jsou vytvoreny A a B jsou vytvoreny
A A
B B
Main Main
cas cas
Vypise se B, A.] [Vypise se A, B.

Ukazka: co vypise program?

1 class MyProg {

2 static 1nt counter = 0;

3 static void Main() {

4 var tl = new Thread(Increment);

5 var t2 = new Thread(Increment);

6 tl.Start(); t2.Start();

7 t1.Join(); t2.Join();

8 Console.WritelLine("Counter: " + counter);
9 ¥

10

11 static void Increment() f{

12 for (int 1 = 0; 1 < 10 _000 _000; i++)
13 counter++,

14 }

15 }

Ukazka: co se déje

- Abychom pochopili predchozi ukazku, musime si ukazat jak funguje
zvysovani Citace na urovni instrukcl.
1. Nejprve se nacte hodnota citace z paméti do néjakeho registru.
2. Poté se hodnota v registru inkrementuje.
3. Nova hodnota v registru se az poté zapisuje zpét do pameti.

- Co kdyz se stane, ze se vlakna preplanuji po nacteni z paméti, ale pred
zapisem zpét?

Ukazka: co se déje

- Reknéme, Ze hodnota v Citadi je 1000, pak muZe nastat nasledujici
situace.

Vlakno A nacte z paméti hodnotu 1000 do registru.

A inkrementuje hodnotu v registru.

Preplanuje se na vlakno B.

B nacte z paméti take 1000.

B inkrementuje hodnotu v registru.

B zapiSe do paméti hodnotu 1001.

Preplanuje se zpét na vlakno A.

A taky zapise do paméti hodnotu 1001.

D N0 W 2

ProC v operacnich systémech?

- Abychom psali korektni vicevlaknove programy, budeme potrebovat
podporu od OS.

- Samotny OS je vicevlaknovy program — musi byt spravné
synchronizovan.

Synchronizacni nastroje: hardware

- Abychom mohli vytvaret vyssi synchronizacni nastroje<?> potrebujeme
nejakou podporu od hardwaru.

- Potrebujeme, aby procesor podporoval instrukci, ktera atomicky
vymeéni hodnotu v registru s paméti.

- Obecné se teto instrukci rika test-and-set, compare-and-swap nebo
atomic exchange.

- V kazde architekture se jmenuje trochu jinak:
» SPARC: 1dstub - load and store unsigned byte
» X86: xchg — exchange
» RISC-V: amocas — atomic compare and swap

<2>Semafory, mutexy, bariéry, atd.

<>Atomicky znamena ,v jednom kroku.” 0

Jednoduchy spinlock

1 class SpinLock {
2 int flag;

3

4 void init() A

5 flag = 0;

6 }

/

8 void lock() {

9 while (TestAndSet(ref flag, 1) == 1) {}
10 }

11

12 void unlock() {
13 flag = 0;

14 }

15 }

11

Jednoduchy spinlock

- Predchozi je spis takovy pseudokod, ktary ilustruje jak funguji

spinlocky.
» Funkce TestAndSet v C# neexistuje — je nahrada za nasi test-and-set
Instrukci.
- Kdyz chce vlakno ziskat zamek, tak aktivné testuje hodnotu porad
dokola.

» Muze byt zadouci, kdyz cekame, ze se zamek brzo uvolni.
» Nemusi byt zadouci, pokud tohle budeme délat dlouho a budeme
tim brat ¢as na CPU.
- Pozdéji si ukazeme jiny zpusob, jak postavit zamek na blokovani.

12

Pojmy spojené se synchonizaci 1

- Kriticka sekce je misto, kde vlakna pristupuji ke sdilenym zdrojim.
» V nasem prikladu s citacem je to funkce Increment:

1 static void Increment() {
2 for (int 1 = 0; i < 10 _000 _000; i++)

3 ‘counter++; | }

- Race condition (nebo data race) nastava, kdyz se dvé vlakny najednou
pokusi upravit sdilené data.

- Vlakna by mély vyuzivat néjaky typ vzajemnéeho vylouceni (angl.
mutual exclusion), aby jen jedno z nich mohlo byt v kritické sekci.

13

Pouziti spinlocku na citac

1 using System.Threading;

2 class MyProg {

3

4 static SpinLock sl1 = new SpinLock();
5 static void Main() { ... }

6 static void Increment() {

7 for (int i = @0; 1 < 10_000_000; i++) {
8 bool lockTaken = false;

9 do {

10 sl.Enter(ref lockTaken);
11 } while (!lockTaken);

12 counter++,

13 s1.Exit(); }

14 }

15 '}

14

Pouziti spinlocku na citac

- Predchozi pristup nemusi byt optimalni — spousta architektur
podporuje atomickou inkrement instrukci.

15

+ Mutex je zkratka pro mutual exclusion lock.
- Mutexy vétSinou blokuji vlakna, které chtéji ziskat zamek.
- Pokud néjake vlakno A chce ziskat zamek, ale uz ho vlastni vlakno B,
tak je A uspano dokud B zamek neuvolni.
- Efektivnéjsi nez spinlock, kdyz vime, ze budeme dlouho cekat.
» Na druhou stranu, pokud budeme cekat jen chvili, muze byt spinlock
lepsi.<+

<>Uspani vlakna totiz vyzaduje néjakou rezii od OS. i

Pouziti mutexu na citac

using System.Threading;
class MyProg {

static Mutex mut = new Mutex();

static void Main() { ... }
static void Increment() A

mut.wWaitOne(-1);

for (int 1 = 0; i < 10 000 000; i++)
counter++;

OO 0 N o o & W N -

=
S

mut.ReleaseMutex();

=
N
—
e

17

- Semafory limituji pocet vlaken, Rteré mohou pristupovat ke sdilenemu
zdroji.

- Inicializace: new Semaphore(initial, maximum).
» Cita€ uvniti semaforu je nastaven na initial.

- Do kritické sekce vstoupime pomoci Semaphore.WaitOne().
» Pokud je citac > 0, tak se snizi a vlakno vstoupi do kritické sekce.
» Pokud je Citac = 0, tak se vlakno uspi, dokud neni citac

inkrementovan.

- PYi opusteéni kriticke sekce zavolame Semaphore.Release().
» Inkrementuje citac o 1.

* new Semaphore(1, 1) se chova jako lock.

18

Pouziti semaforu na citac

using System.Threading;
class MyProg {

static Semaphore sem = new Semaphore(1l, 1);

static void Main() { ... }
static void Increment() A

sem.WaitOne();

for (int 1 = 0; i < 10 000 000; i++)

counter++,

OO 0 N o o & W N -

=
S

sem.Release();

=
N
—
e

19

Razeni udalosti pomoci semaforu

Na kolik nastavit x v inicializaci semaforu?

1 class MyProg {

2 static Semaphore sem = new Semaphore(X, 100);
3 static void Main() {

4 Console.WriteLine("Vypise se 1.");
5 var tl = new Thread(PrintStuff);

6 tl.Start();

7 sem.WaitOne();

8 Console.WritelLine("Vypise se 3.");
9 3

10 static void PrintStuff() {

11 Console.WriteLine("Vypise se 2.");
12 sem.Release();

13 +}

20

v -

Vecerici filosofove

- Ukazeme si jeden klasicky<>> synchronizacni problém.

- Filozofove (PO, P1, ...) sediv
kruhu a maji mezi sebou vidlicky

(fo, f1, ...).
- Filosof muze byt v jednom ze 2
stavu:

» Bud premysli a nic nedela.

» Nebo muze dostat hlad, v tom
pripadé musi chytnout obé
vidlicky, aby mohl jist.

<&

<>>Poprvé publikovan a vyresen Edsgerem Dijkstrou v roce 1971.)

v -

Vecerici filosofove: naivni reseni

1 void Philosopher(int i) {
2 while (true) f{ _
, TakeFork(i) se
3 Think(); .. .
. pokusi ziskat i-tou
A TakeFork(Left(1i)); .
, , vidlicku.
5 TakeFork(Right(i)); , ,
» Pokud je zabrana
6 Fat(); o
. tak filosof ceka.
7 PutFork(Left(i)); _ .
. . * PutFork(i) uvolni i-
8 PutFork(Right(i)); o
tou vidlicku.
9 }
10 }

Vidite néjaky problem s timto resenim?

22

v -

Vecerici filosofove: funkcni reseni

1
2
3
4
5
6
/
3
9

Mutex mut;
void Philosopher(int i) {
while (true) {
Think();

mut.wWaitOne();

TakeFork(Left(1i));
TakeFork(Right(1));
Eat();
PutFork(Left(i));
PutFork(Right(1i));

N
NS

mut.ReleaseMutex();

=
w N
—
—

Vidite néjaky problem s timto reSenim?

23

Vecerici

O 0 N OO0 o1 & W N -

v -

Semaphore[] sems;
void Philosopher(int i) {
while (true) {
Think();
TakeForks(i);
Eat();
PutForks(i);

10
11
12
13

15
16
17
18

filosofove: reSeni pomoci semafor

void TakeForks(int 1) {
sems[L(i)].waitOne();
sems[R(i)].waitOne();

void PutForks(int i) {
sems[L(i)].Release();
sems[R(i)].Release();

- Semafory jsou inicializovany na 1.

- Vidite néjaky problém s timto resenim?

24

v -

Vecerici filosofové: reSeni pomoci semaforu

. Reknéme, Ze je 5 filosofu, v pfedchozim FeSeni miZe nastat deadlock
nasledovné:

1. Filosof 0 dostane hlad, vezme vidlicku O.

2. Filosof 1 dostane hlad, vezme vidlicku 1.

3. ...

4. Filosof 4 dostane hlad, vezme vidlicku 4.

- Dostali jsme se do situace, kdy kazdy filosof drzi levou vidlicku.

- Kazdy z nich ale chce ziskat pravou vidlicku, ale nikdo ji neuvolni —
deadlock.

Mate napad jak predejit deadlocku?

25

v -

Vecerici filosofoveé: finalni reseni

- Abychom zamezili kruhovému cekani, muzeme zménit zpusob
jakym jeden filosof bere vidlicky.
- Napr. posledni filosof vezme nejprve pravou a pak levou vidlicku.

1 void TakeForks(int i) f{

2 if (i = 4) {

3 sems[[R(i)|].WaitOne();
4 sems[L(1) J.waitOne();
5 } else {

6 sems[[L(i)].waitOne();
7 sems[[R(1)].waitOne();
8 }

9 }

26

v -

Vecerici filosofoveé: finalni reseni

- Ukazme si, jak resi posledni uprava problem kruhového cekani.

1. Filosof 0 dostane hlad, vezme vidlicku O.

2. Filosof 1 dostane hlad, vezme vidlicku 1.

3. ..

4. Filosof 4 dostane hlad, zkusi vzit vidlicku O.
- Tu ma filosof 0, takze c¢eka na uvolnéni.

- V této chvili nenastane deadlock.
» Filosof 3 muze totiz vzit vidlicku 4 — tim ziska obé vidlicky a muze se
najist.
» Pak muze ziskat obé vidlicky filosof 2 atd.

27

- Co jsou to vlakna.
- Odkud se berou synchronizacni bugy.
» Co se déje na urovni HW.
- Synchronizacni primitiva, podpora od HW.
- Jednoducheé synchronizacni priklady, problém vecefricich filosofu.

28

	Co je to vlákno?
	Využití pro vlákna
	Vytváření vláken v C#
	Ukázka: co vypíše program?
	Ukázka: možné naplánování
	Ukázka: co vypíše program?
	Ukázka: co se děje
	Ukázka: co se děje
	Proč v operačních systémech?
	Synchronizační nástroje: hardware
	Jednoduchý spinlock
	Jednoduchý spinlock
	Pojmy spojené se synchonizací 1
	Použití spinlocku na čítač
	Použití spinlocku na čítač
	Mutex
	Použití mutexu na čítač
	Semafory
	Použití semaforu na čítač
	Řazení událostí pomocí semaforu
	Večeřící filosofové
	Večeřící filosofové: naivní řešení
	Večeřící filosofové: funkční řešení
	Večeřící filosofové: řešení pomocí semaforů
	Večeřící filosofové: řešení pomocí semaforů
	Večeřící filosofové: finální řešení
	Večeřící filosofové: finální řešení
	Shrnutí

