Virtualni pamét

Strankovani, TLB, tabulky stranek

Milan Radojcic
SSPSaG - Operacni systémy
4.1.2026

Nt

Opakovani — base/bounds, adresovy prostor

0 TMB 2MB 3MB 4MB 5MB 6MB /MB
0S PO P1 P2

Rozdéleni HP

PO | Kod | Halda —>> <t— zasobnik

Adresovy prostor

- Co je smysl virtualni paméti?
- Co jsme si rikali minule?
- Kdo provadi preklad? (SW vs. HW)

Opakovani - interni fragmentace

0 TMB 2MB 3MB 4MB 5MB 6MB /MB
0OS PO P1 P2 P3 P4 P5

Hlavni pamét

0 TMB
PO | Kod | Halda Zasobnik

Adresovy prostor

Vyznam virtualni paméti pro bezpecnost

» Exploiting the DRAM rowhammer bug to gain kernel privileges™”
» Meltdown: Reading Kernel Memory from User Space*”
- Spectre Attacks: Exploiting Speculative Execution®

“"https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammers=
bug-to-gain.html

“2https://meltdownattack.com/meltdown.pdf

<*https://spectreattack.com/spectre.pdf

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf

Princip strankovani

Virtualni adresovy prostor rozdélime na stranky.
Fyzickou pamét rozdélime na ramce.

Ramce i stranky budou mit stejnou velikost.

Virtualni stranky budeme mapovat do fyzickych ramcu.

- 0B 0
ramec 0 OS
. 168 1
ramec 1
. 0B - 328 2
stranka 0 ramec 2 POST
. 168 - 48B 3
stranka 1 ramec 3 POSO
- 328 - 64B 4
stranka 2 ramec 4
~ 48B - 80B 5
stranka 3 ramec 5 e P1S2]
Adresovy prostor SUIE I p Sl il
ramec 7 P0OS3
Hlavni pamét Mapovani<+

“*P0S1 = proces 0, stranka 1, atd.

Jak prekladat?

- Virtualni adresy rozdélime na cislo stranky a offset.
- V nasem prikladu mame 4 stranky a 16B v jedne strance.
- Rozdéleni tedy bude 2b cislo stranky a 4b offset: 010110.

- Staci nam jen prekladat cislo stranky na cislo ramce — offset
nechame byt!

010110

|

Preklad

o

0100110

Jak prekladat?

[Do jaké datové struktury preklady ukladat? A kde?]

- Preklady uloZime do jednorozmérného pole.
- V n-té polozce bude preklad n-te stranky.

0 1 2 3

R6 RT | RS

- Pole uloZzime do hlavni paméti.

Jak prekladat?

- Preklad provadi MMU (memory management unit).
» To je Cast CPU odpovédna za preklad adres.

- OS musi informovat MMU kde se v paméti nachazi tabulka s
prekladem.

Pribéh prekladu

1.

Je spustén néjaky proces, do MMU je nahrana adresa jeho
tabulky stranek.
Proces chce pristoupit k néjaké adrese (nutné v jeho VAP!).

. MMU se podiva do tabulky stranek, najde preklad.

- Pokud preklad neexistuje/neni validni, informuje o tom OS.
Prepise Cislo stranky za Cislo ramce podle nalezeného prekladu
a k této adrese se pristupuje.

Probléemy s jednoduchym strankovanim

Jaké vidite problemy s timto pristupem?

1. Je pomaly — kazdy pristup do paméti potrebuje jesté 1 extra
pristup.

2. Nebudou tabulky stranek moc velke? Nechceme, aby preklady
zabraly vétSinu hlavni paméti.

Velikost jednoduchych/linearnich tabulek

- Uvazme 32 bitovy adresovy prostor.

- Offset budeme brat 12b (velikost stranky bude 4KB).

- Na cislo stranky nam zbyva 20b.

- To znamena, Ze nase pole s preklady bude mit 22° prvku!

- Reknéme, Ze jedna polozka v tabulce bude mit 4B.<*

- To nam celkem dava 4MB na jednu tabulku!

- My ale potrebujeme tabulku pro kazdy proces.

- Pokud mame spusténych 100 procesu, tak 400MB spotrebujeme jen na
tabulky stranek!

“>*Velikost zavisi na HW. Obecné nemame v tabulce jen preklady, ale jesté néjakeé

dodatecneé informace. Vice si rekneme dale. 5

Zrychleni prekladu: TLB

Mate napad jak zrychlit preklady?

- Do MMU pridame cast, kterée se rika TLB — translation lookaside

buffer.
- TLB bude cachovat preklady.
- MMU se pri prekladu nejprve podiva do TLB.
» Pokud v TLB je validni preklad, tak se pouzije.
» Pokud v TLB neni validni preklad, tak se MMU podiva pro
preklad do hlavni paméti. Poté ho ulozi do TLB.

10

ProcC TLB pomaha?

- Pri cachovani vyuzivame obecné néceho, cemu se rika casova a

prostorova lokalita.
» Casto budeme znovu pfistupovat k datuim, které jsme pred chvili

potrebovali.
» Casto budeme znovu prfistupovat k datum, co jsou blizko téch co

jsme pred chvili potrebovali.

11

ProcC TLB pomaha?

offset

0O 4 8 12 16

- Predstavme si situaci na 2
diagramu vpravo. 3
» Sekvencné prochazime pole. 4 a(0] al1]
- Kolikrat se musi kvuli prekladu % 5 |l et [et] e
*E 6 |ale]|al7]|al8] |al9]

pristoupit k hlavni paméti bez
TLB?
- A kolikrat s TLB?

7 |a[10]{a[11]|al12]|a[13]

8 |al14]{a[15]

9

10

1

Pole v paméti

12

Problém TLB: zmény kontextu

¢. kvantum syscall

PO
P1
P2

Preemptivni planovani

cas

Mame jen jednu TLB na jadro CPU. Na co si musime dat pozor, kdyz

V w

se déje zména kontextu? (Vymeénuje se proces, ktery bézi.)

Musime si davat pozor, abychom nepletli preklady pro ruzneé
procesy. Kazdy zaznam v TLB ma polozku ASID (address space
identifier), ktera slouzi jako ID procesu, kteréemu patfi tenhle
preklad.

13

Ukazka zaznamu TLB

C. stranky|¢. ramce|valid |prava|ASID
1 3 ano | rwx T
T 2 ne r-- T
1 8 ano | r-- 2
2 5 ano | r-- 1

14

Mensi tabulky stranek

Pomoci TLB jsme urychlili preklady, ale jak zmensime tabulky?
Napada vas jina struktura?

15

Mensi tabulky stranek

Mame vice moznosti jak na to:

1. vétsi stranky,®

kombinace strankovani a segmentace,””
invertovane tabulky stranek,®
viceurovnoveé tabulky stranek.

F W

My si popiseme jen viceurovnove tabulky. Pro vysvétleni jinych
principu viz napr. Operating Systems: Three Easy Pieces nebo
Understanding the Linux Kernel*.

“>Ma pridany bonus toho, ze zlepsi efektivitu TLB.
“>Pouzival napf. Multics.
“¢>Pouziva napr. SPARC.

“>Tohle dobre popisuje architekturu x86. 16

Viceurovnove tabulky stranek

- Cislo stranky rozdélime na vice Cast.
- Kazda cast funguje jako offset do jiné urovné prekladu.

VPN offset

13112111019 |1 8| 7|6 |54 |3 [2|1]0

Page Directory Index Page Table Index

17

Viceurovnove tabulky stranek

Linear Page Table

PTBR | 201 |

O

= 0

S a PFN
1] rx 12
1] rx 13
O _ _
Tlrw 100
0l - B
ol - -
ol - -
0l - _
0 - B
0l - _
ol - -
ol - -
0 - B
0l -

Tirw 86
1rw 15

PFN 204 "PFN 203 'PFN 202 "PFN 201

Multi-level Page Table

PDBR | 200 |
o
S pFN
o —
e N o S—

The Page Directory

v

T

= 2

> a PFN

1] rx 12 —
1] rx 13 3
ol - - | 2
1lrw 100 o

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

—>

rw

86

0
0
1
1

r'w

PFN 204

15

18

Struktura tabulky stranek architektury x86-64

Linear address:

63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0
T 1T 1T 1T 1T 17T T 1T 1T T T T T

sign extended
[T T T O

9 9 9 9 12
PML4 table page-directory-
pointer table
page directory
o page table .
[] []
[] ° []
[]
[] ° %})
: . g
PML4 @l . ~
entry ° S
B | - :
< ey 64 bit PT @ | X
° o entry
[]
O ° °
40* : . :
[]
[]
—@ CR3

*) 40 bits aligned to a 4-KByte boundary

19

Zaznam Vv tabulce stranek x86-64

= PTE of x86 architecture

Page-Table Entry (4-KByte Page)

31 12 11 9876543210
P PIP|U|R
Page Base Address Avail [G|A|ID[A|C|W|/ |/ |P
T D|T|S|W
Available for system programmer’s use J ‘
Global Page
Page Table Attribute Index
Dirty
Accessed

Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

20

- Strankovani, princip prekladu, jednourovnove tabulky

- Zrychleni TLB, zmenseni tabulek pomoci viceturovnovych tabulek

- Vynechali jsme problematiku nahrazovani stranek a nahrazovani
zaznamu v TLB.*'>

1%Viz napr. Operating Systems: Three Easy Pieces - https://ostep.org.)

https://ostep.org

Bonusove cviceni

- Jako bonus za 3 body si muzete zkusit zmé¥it efekt TLB na rychlost
pristupu do paméti.
- Zakladni kod pro méreni:

1 int jump = PAGESIZE / sizeof(int);
2 for (1 = @; 1 < NUMPAGES * jump; 1 += jump)
3 ali] += 1;

- Toto chcete spoustét ve smycce (napr. 1000 krat) a mérit primérnou
dobu jednoho pristupu do paméti.

- Okolo toho vSeho chcete mit dalSi smycku, ktera bude ménit pocet
stranek.

22

Bonusove cviceni: ukazka

Primérnéd doba pristupu v zavislosti na poctu stranek

6.0 - ——

5.5 1

-
(@)
1

Doba v ns
D
Ul
1

3.5 -

3.0 -

16 32 64 128 256 512
Pocet stranek

N_
I
00]

23

Bonusoveé cviceni: tipy

» Pomocl prct1(PR_SET_THP_DISABLE, 1, 0, 0, ©) vypnéte Transparent
Huge Pages.

- K méreni muzete pouzit clock_gettime(...) (pres clock getres(...)
jde zkontrolovat presnost).

- Pomoci sched _setaffinity(...) muzete operacnimu systému rict, aby
planoval jen na nékteré konkrétni jadro.

- Méli by jste vidét 2 hezkeé urovng, pokud tomu tak neni zkontrolujte
mereni.
» Jak pocitate prumérny ¢as? Nedochazi k overflow nékde?
» Nemérte casy ve vnitrni smycce, zkazi vam to pruméry.
» Zkuste zvetsit pocet spusteni pro jednu velikost, ktere se

prumeéruji."

“">Hlavné mensi pocty stranek se muzou chovat divné, kdyZz mate moc nizky pocet

spusteni.
P 24

Bonusove cvicenl: odevzdavani

- Odevzdejte mailem do uzavreni pololeti klasifikace.
- Méli by jste odevzdat:
1. Vas kod pro méreni.
2. Nejaky graf z vaSeho méreni.
3. Kratky popis, co jste zjistili (jak velka je cca L1, pripadné L2 TLB).

25

	Opakování – base/bounds, adresový prostor
	Opakování – interní fragmentace
	Význam virtuální paměti pro bezpečnost
	Princip stránkování
	Jak překládat?
	Jak překládat?
	Jak překládat?
	Problémy s jednoduchým stránkováním
	Velikost jednoduchých/lineárních tabulek
	Zrychlení překladů: TLB
	Proč TLB pomáhá?
	Proč TLB pomáhá?
	Problém TLB: změny kontextu
	Ukázka záznamů TLB
	Menší tabulky stránek
	Menší tabulky stránek
	Víceúrovňové tabulky stránek
	Víceúrovňové tabulky stránek
	Struktura tabulky stránek architektury x86-64
	Záznam v tabulce stránek x86-64
	Shrnutí
	Bonusové cvičení
	Bonusové cvičení: ukázka
	Bonusové cvičení: tipy
	Bonusové cvičení: odevzdávání

