
Virtuální paměť
Stránkování, TLB, tabulky stránek

Milan Radojčić

SSPŠaG – Operační systémy

4. 1. 2026

Opakování – base/bounds, adresový prostor

OS P0 P1 P2

0 1MB 2MB 3MB 4MB 5MB 6MB 7MB

Rozdělení HP

P0 Kód Halda Zásobník

Adresový prostor

• Co je smysl virtuální paměti?
• Co jsme si říkali minule?
• Kdo provádí překlad? (SW vs. HW)

1

Opakování – interní fragmentace

OS P0 P1 P2 P3 P4 P5

0 1MB 2MB 3MB 4MB 5MB 6MB 7MB

Hlavní paměť

P0 Kód Halda Zásobník

0 1MB

Adresový prostor

2

Význam virtuální paměti pro bezpečnost

• Exploiting the DRAM rowhammer bug to gain kernel privileges<1>

• Meltdown: Reading Kernel Memory from User Space<2>

• Spectre Attacks: Exploiting Speculative Execution<3>

<1>https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-
bug-to-gain.html

<2>https://meltdownattack.com/meltdown.pdf
<3>https://spectreattack.com/spectre.pdf

3

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf

Princip stránkování

• Virtuální adresový prostor rozdělíme na stránky.
• Fyzickou paměť rozdělíme na rámce.
• Rámce i stránky budou mít stejnou velikost.
• Virtuální stránky budeme mapovat do fyzických rámců.

stránka 0
0B

stránka 1
16B

stránka 2
32B

stránka 3
48B

Adresový prostor

rámec 0
0B

rámec 1
16B

rámec 2
32B

rámec 3
48B

rámec 4
64B

rámec 5
80B

rámec 6
96B

rámec 7
112B

Hlavní paměť

0

1

2

3

4

5

6

7

OS

P0S1
P0S0

P0S3
P1S1
P1S2

Mapování<4>

<4>P0S1 = proces 0, stránka 1, atd.
4

Jak překládat?

• Virtuální adresy rozdělíme na číslo stránky a offset.
• V našem příkladu máme 4 stránky a 16B v jedné stránce.
• Rozdělení tedy bude 2b číslo stránky a 4b offset: 010110.
• Stačí nám jen překládat číslo stránky na číslo rámce — offset

necháme být!

0101 10

Překlad

01001 10

5

Jak překládat?

Do jaké datové struktury překlady ukládat? A kde?

• Překlady uložíme do jednorozměrného pole.
• V 𝑛-té položce bude překlad 𝑛-té stránky.

0 1 2 3

R6 R1 R5

• Pole uložíme do hlavní paměti.

6

Jak překládat?

• Překlad provádí MMU (memory management unit).
‣ To je část CPU odpovědná za překlad adres.

• OS musí informovat MMU kde se v paměti nachází tabulka s
překladem.

Průběh překladu

1. Je spuštěn nějaký proces, do MMU je nahrána adresa jeho
tabulky stránek.

2. Proces chce přistoupit k nějaké adrese (nutně v jeho VAP!).
3. MMU se podívá do tabulky stránek, najde překlad.

• Pokud překlad neexistuje/není validní, informuje o tom OS.
4. Přepíše číslo stránky za číslo rámce podle nalezeného překladu

a k této adrese se přistupuje.

7

Problémy s jednoduchým stránkováním

Jaké vidíte problémy s tímto přístupem?

1. Je pomalý — každý přístup do paměti potřebuje ještě 1 extra
přístup.

2. Nebudou tabulky stránek moc velké? Nechceme, aby překlady
zabraly většinu hlavní paměti.

8

Velikost jednoduchých/lineárních tabulek

• Uvažme 32 bitový adresový prostor.
• Offset budeme brát 12b (velikost stránky bude 4KB).
• Na číslo stránky nám zbývá 20b.
• To znamená, že naše pole s překlady bude mít 220 prvků!
• Řekněme, že jedna položka v tabulce bude mít 4B.<5>

• To nám celkem dává 4MB na jednu tabulku!
• My ale potřebujeme tabulku pro každý proces.
• Pokud máme spuštěných 100 procesů, tak 400MB spotřebujeme jen na

tabulky stránek!

<5>Velikost závisí na HW. Obecně nemáme v tabulce jen překlady, ale ještě nějaké
dodatečné informace. Více si řekneme dále.

9

Zrychlení překladů: TLB

Máte nápad jak zrychlit překlady?

• Do MMU přidáme část, které se říká TLB — translation lookaside
buffer.

• TLB bude cachovat překlady.
• MMU se při překladu nejprve podívá do TLB.
‣ Pokud v TLB je validní překlad, tak se použije.
‣ Pokud v TLB není validní překlad, tak se MMU podívá pro

překlad do hlavní paměti. Poté ho uloží do TLB.

10

Proč TLB pomáhá?

• Při cachování využíváme obecně něčeho, čemu se říká časová a
prostorová lokalita.
‣ Často budeme znovu přistupovat k datům, které jsme před chvílí

potřebovali.
‣ Často budeme znovu přistupovat k datům, co jsou blízko těch co

jsme před chvílí potřebovali.

11

Proč TLB pomáhá?

• Představme si situaci na
diagramu vpravo.

• Sekvenčně procházíme pole.
• Kolikrát se musí kvůli překladu

přistoupit k hlavní paměti bez
TLB?

• A kolikrát s TLB?

offset

0 4 8 12 16

a[0] a[1]

a[2] a[3] a[4] a[5]

a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13]

a[14] a[15]

st
rá

nk
a

0

1

2

3

4

5

6

7

8

9

10

11

Pole v paměti

12

Problém TLB: změny kontextu

OS
P2
P1
P0

č. kvantum syscall

čas

Preemptivní plánování

Máme jen jednu TLB na jádro CPU. Na co si musíme dát pozor, když
se děje změna kontextu? (Vyměňuje se proces, který běží.)

Musíme si dávat pozor, abychom nepletli překlady pro různé
procesy. Každý záznam v TLB má položku ASID (address space
identifier), která slouží jako ID procesu, kterému patří tenhle
překlad.

13

Ukázka záznamů TLB

č. stránky č. rámce valid práva ASID
1 3 ano rwx 1
1 2 ne r-- 1
1 8 ano r-- 2
2 5 ano r-- 1

14

Menší tabulky stránek

Pomocí TLB jsme urychlili překlady, ale jak zmenšíme tabulky?
Napadá vás jiná struktura?

15

Menší tabulky stránek

Máme více možností jak na to:
1. větší stránky,<6>

2. kombinace stránkování a segmentace,<7>

3. invertované tabulky stránek,<8>

4. víceúrovňové tabulky stránek.

My si popíšeme jen víceúrovňové tabulky. Pro vysvětlení jiných
principů viz např. Operating Systems: Three Easy Pieces nebo
Understanding the Linux Kernel<9>.

<6>Má přidaný bonus toho, že zlepší efektivitu TLB.
<7>Používal např. Multics.
<8>Používá např. SPARC.
<9>Tohle dobře popisuje architekturu x86.

16

Víceúrovňové tabulky stránek

• Číslo stránky rozdělíme na více částí.
• Každá část funguje jako offset do jiné úrovně překladu.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index Page Table Index

17

Víceúrovňové tabulky stránek

va
li
d

p
ro

t

PFN
1 rx 12
1 rx 13
0 - -
1 rw 100
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
1 rw 86
1 rw 15

Linear Page Table

PTBR 201

P
F

N
2

0
1

P
F

N
2

0
2

P
F

N
2

0
3

P
F

N
2

0
4

va
li
d

p
ro

t

PFN
1 rx 12
1 rx 13
0 - -
1 rw 100

0 - -
0 - -
1 rw 86
1 rw 15

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

P
F

N
2

0
1

P
F

N
2

0
4

Multi-level Page Table

PDBR 200

va
li
d

PFN
1 201
0 -
0 -
1 204P

F
N

2
0

0
The Page Directory

18

Struktura tabulky stránek architektury x86-64

CR3

3239404748555663 08162431 15 723

...
...

4K
 m

em
or

y
pa

ge

Linear address:

64 bit PD
entry

...
...

page directory

...
...

PDP
entry

page-directory-
pointer table

64 bit PT
entry

...
...

page table
...

...

PML4
entry

PML4 table
99

40*

9 9 12

sign extended

*) 40 bits aligned to a 4-KByte boundary

19

Záznam v tabulce stránek x86-64

20

Shrnutí

• Stránkování, princip překladu, jednoúrovňové tabulky
• Zrychlení TLB, zmenšení tabulek pomocí víceúrovňových tabulek
• Vynechali jsme problematiku nahrazování stránek a nahrazování

záznamů v TLB.<10>

<10>Viz např. Operating Systems: Three Easy Pieces – https://ostep.org.
21

https://ostep.org

Bonusové cvičení

• Jako bonus za 3 body si můžete zkusit změřit efekt TLB na rychlost
přístupu do paměti.

• Základní kód pro měření:

1 int jump = PAGESIZE / sizeof(int); C

2 for (i = 0; i < NUMPAGES * jump; i += jump)

3 a[i] += 1;

• Toto chcete spouštět ve smyčce (např. 1000 krát) a měřit průměrnou
dobu jednoho přístupu do paměti.

• Okolo toho všeho chcete mít další smyčku, která bude měnit počet
stránek.

22

Bonusové cvičení: ukázka

23

Bonusové cvičení: tipy

• Pomocí prctl(PR_SET_THP_DISABLE, 1, 0, 0, 0) vypněte Transparent
Huge Pages.

• K měření můžete použít clock_gettime(...) (přes clock_getres(...)
jde zkontrolovat přesnost).

• Pomocí sched_setaffinity(...) můžete operačnímu systému říct, aby
plánoval jen na některé konkrétní jádro.

• Měli by jste vidět 2 hezké úrovně, pokud tomu tak není zkontrolujte
měření.
‣ Jak počítáte průměrný čas? Nedochází k overflow někde?
‣ Neměřte časy ve vnitřní smyčce, zkazí vám to průměry.
‣ Zkuste zvětšit počet spuštění pro jednu velikost, které se

průměrují.<11>

<11>Hlavně menší počty stránek se můžou chovat divně, když máte moc nízký počet
spuštění.

24

Bonusové cvičení: odevzdávání

• Odevzdejte mailem do uzavření pololetí klasifikace.
• Měli by jste odevzdat:

1. Váš kód pro měření.
2. Nějaký graf z vašeho měření.
3. Krátký popis, co jste zjistili (jak velká je cca L1, případně L2 TLB).

25

	Opakování – base/bounds, adresový prostor
	Opakování – interní fragmentace
	Význam virtuální paměti pro bezpečnost
	Princip stránkování
	Jak překládat?
	Jak překládat?
	Jak překládat?
	Problémy s jednoduchým stránkováním
	Velikost jednoduchých/lineárních tabulek
	Zrychlení překladů: TLB
	Proč TLB pomáhá?
	Proč TLB pomáhá?
	Problém TLB: změny kontextu
	Ukázka záznamů TLB
	Menší tabulky stránek
	Menší tabulky stránek
	Víceúrovňové tabulky stránek
	Víceúrovňové tabulky stránek
	Struktura tabulky stránek architektury x86-64
	Záznam v tabulce stránek x86-64
	Shrnutí
	Bonusové cvičení
	Bonusové cvičení: ukázka
	Bonusové cvičení: tipy
	Bonusové cvičení: odevzdávání

