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Prvoč́ısla

Kongruence

Algoritmus Square and Multiply

Eulerova věta
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Úvod

▶ Teorie č́ısel se zabývá vlastnostmi (hlavně celých) č́ısel.

▶ Jedná se o jednu z nejstařśıch matematických discipĺın vedle algebry,
aritmetiky a geometrie.

▶ Poznatky jsou v současné době použ́ıvány v asymetrické kryptografii
(RSA, pseudonáhodné generátory).
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Dělitelnost

Definice

Mějme a, b ∈ Z, plat́ı, že a děĺı b, znač́ıme a | b, právě tehdy, když:
(∃k ∈ Z)(a · k = b).

Definice

Č́ıslo c ∈ N0 je nejvěťśım společných dělitelem č́ısel a, b ∈ Z, znač́ıme
c = gcd(a, b), pokud je jejich společný dělitel a zároveň je celoč́ıselným
násobkém každého jiného jejich společného dělitele.

Definice

Č́ısla a, b ∈ Z nazýváme nesoudělná právě tehdy, když gcd(a, b) = 1.
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Definice prvoč́ısla

Definice

Přirozené č́ıslo n ≥ 2 nazýváme prvoč́ıslem právě tehdy, když má jen dva
dělitele: 1 a sebe sama.

Definice

Přirozené č́ıslo n ≥ 2 nazýváme složeným č́ıslem právě tehdy, když neńı
prvoč́ıslem (má jiného dělitele než 1 a sebe sama).

Z těchto definic je patrné, že č́ıslo 1 nepaťŕı ani do č́ısel složených ani do
prvoč́ısel a tvǒŕı samotnou skupinu.
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Základńı věta aritmetiky

Věta

Každé c ∈ N, c ≥ 2 lze vyjáďrit ve tvaru:

c = pm1
1 · p

m2
2 · . . . · p

mn
n =

n∏
i=1

pmi
i

kde p1, . . . , pn jsou prvoč́ısla a m1, . . . ,mn jsou celá č́ısla. Tento zápis také
nazýváme prvoč́ıselným rozkladem.

Př́ıklad

36 = 2 · 18 = 2 · 2 · 9 = 2 · 2 · 3 · 3 = 22 · 32
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Základńı věta aritmetiky

▶ Problém faktorizace je p̌redpokládán za velice obt́ıžný.
▶ Neńı znám obecný algoritmus co by dokázal faktorizovat

”
rychle.“1

• Předpokládá se, že takový algoritmus neexistuje.

▶ Na tomto je založena bezpečnost RSA.

1V polynomiálńım čase v̊uči počtu cifer.
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Kongruence modulo n

Definice

Mějme a, b, n ∈ N a n ≥ 2. Ř́ıkáme, že a je kongruentńı s b modulo n,
znač́ıme

a ≡ b (mod n)

právě tehdy, když n | (a− b).

Př́ıklad

11 ≡ 7 ≡ 3 (mod 4)
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Věta

Následuj́ıćı tvrzeńı jsou ekvivalentńı:

▶ a ≡ b (mod n)

▶ a mod n = b mod n

▶ (∃l ∈ N)(b = a+ l · n)
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Úpravy v kongruenćıch modulo n

▶ Můžeme nejprve zmodulovat č́ısla a pak s nimi dále poč́ıtat (u sč́ıtáńı,
odč́ıtáńı, násobeńı a děleńı).

▶ Můžeme obě strany rovnic vynásobit stejným č́ıslem. Také můžeme
od nich stejné č́ısla odeč́ıtat nebo p̌rič́ıtat.

▶ Nemůžeme modulovat č́ısla v exponentech. Tzn. provádět úpravy
typu: 47 ̸≡ 42 (mod 5)

▶ Nemůžeme jednoduše dělit obě strany rovnice č́ıslem. Nap̌r.: 4x ≡ 12
(mod 20) a x ≡ 3 (mod 20) nejsou stejné rovnice. Prvńı rovnice plat́ı
pro x = 8, ale druhá ne.
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Kráceńı rovnic v kongruenćıch modulo n

Věta

Mějme a, b, c, n ∈ N a n ≥ 2, pak plat́ı:

ac ≡ bc (mod n)⇔ a ≡ b (mod n
gcd(c,n))

Př́ıklad

4x ≡ 8 (mod 18)÷ 4

4x ≡ 8 (mod 18)÷ 4, gcd(18, 4) = 2

x ≡ 2 (mod 9)
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Zjednodušte tak, aby se na levé straně nacházelo jen x

8 + 5x ≡ 18 (mod 15) x ≡ 2 (mod 3)
18 + 12x ≡ 78 (mod 9) x ≡ 2 (mod 3)
9 + 12x ≡ 225 (mod 30) x ≡ 3 (mod 5)
2 + 8x ≡ 39 (mod 29) x ≡ 1 (mod 29)
9 + 5x ≡ 49 (mod 17) x ≡ 8 (mod 17)
6 + 12x ≡ 42 (mod 15) x ≡ 3 (mod 5)
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Hlavńı body
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Milan Radojčić Teorie č́ısel SSPŠaG – KBB
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Algoritmus Square and Multiply

▶ Jako p̌ŕıklad si vezměme nap̌r. a8.
• Naivně na to poťrebujeme 7 násobeńı.
• Jde to lépe?

▶ Mocninu si můžeme rozložit jako
(
(a2)

2)2
.

• To jsou jen 3 násobeńı!

▶ Na tomto je založen algoritmus Square and Multiply.
• Někdy se použ́ıvá český výraz binárńı umocňováńı.
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Ukázka Square and Multiply

Ukažme si Square and Multiply na p̌ŕıkladě. Zkuśıme vypoč́ıtat 215 mod 5.

Jako prvńı si rozděĺıme 215 na 21 · 22 · 24 · 28.

A nyńı už jen vypoč́ıtáme jednotlivé mocniny:

21 ≡ 2 (mod 5), 22 ≡ (21)
2 ≡ 22 ≡ 4 (mod 5)

24 ≡ (22)
2 ≡ 42 ≡ 16 ≡ 1 (mod 5)

28 ≡ (24)
2 ≡ 12 ≡ 1 (mod 5)

215 ≡ 2 · 4 · 1 · 1
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Popis Square and Multiply

1. Rozděĺıme naši mocninu na součin tak, aby v exponentech byly jen
mocniny dvojek.

2. Postupně vypoč́ıtáme od nejmenš́ıho exponentu všechny mocniny v
našem součinu tak, že využijeme výsledek z té p̌redchoźı.

3. Vypoč́ıtáme naši mocninu ze součinu mocnin.
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Square and Multiply pseudokód

Vstup: a, e,m
Výstup: v ≡ ae (mod m)
v ← 1
temp ← a
for i ← 0, . . . , n − 1 do ▷ n je počet bit̊u č́ısla e

if ei = 1 then ▷ zápisem ei mysĺıme bit na i-té pozici č́ısla e
v ← v · temp mod m

end if
temp ← temp2 mod m

end for
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Úvod Prvoč́ısla Kongruence Algoritmus Square and Multiply Eulerova věta

Př́ıklady

Zjednodušte následuj́ıćı výrazy

216 (mod 8)
331 (mod 10)
664 (mod 7)
77 (mod 8)
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Definice

Eulerova funkce (znač́ıme φ(n)) je počet všech k ∈ N takových, že
1 ≤ k ≤ n a gcd(k, n) = 1.

Slovně: Eulerova funkce nám udává počet č́ısel menš́ı než n, která jsou s
ńım nesoudělná.
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Vlastnosti Eulerovy funkce

Pro výpočet se nám budou často hodit následuj́ıćı vlastnosti Eulerovy
funkce.

▶ φ(p) = p − 1, kde p je prvoč́ıslo (plyne p̌ŕımo z definice prvoč́ısla)

▶ φ(pa) = (p − 1) · pa−1, pro prvoč́ıslo p a kladné celé a

▶ Pro nesoudělná x , y plat́ı: φ(x · y) = φ(x) · φ(y)
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Úvod Prvoč́ısla Kongruence Algoritmus Square and Multiply Eulerova věta

Z těchto vlastnost́ı a ze základńı věty aritmetiky (prvoč́ıselný rozklad) nám
plyne následuj́ıćı věta.

Věta

Pro c ∈ N plat́ı, že pokud: c = pm1
1 · p

m2
2 · . . . · pmn

n , tak plat́ı:

φ(c) = (p1 − 1) · pm1−1
1 · (p2 − 1) · pm2−1

2 · . . . · (pn − 1) · pmn−1
n
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Eulerova věta

Věta

Pro každé n ∈ N a každé a ∈ N takové, že gcd(n, a) = 1, plat́ı:

aφ(n) ≡ 1 (mod n)

▶ Pro prvoč́ıselné n se dá odvodit vztah

an−1 ≡ 1 (mod n).

• Tomuto vztahu se ř́ıká malá Fermatova věta.
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Př́ıklady

Zjednodušte následuj́ıćı výrazy

35 (mod 8)
86 (mod 9)
35 (mod 9)
717 (mod 15)
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